论文标题
来自机器常识推理的文字评估的人格评估
Personality Assessment from Text for Machine Commonsense Reasoning
论文作者
论文摘要
本文介绍了Persense,这是一个基于表达的文本估算人格特征的框架,并将其用于常识性推理分析。人格评估方法包括汇总的概率密度函数(PDF)和机器学习(ML)模型。我们的目标是证明在人格特质数据上使用机器学习算法来预测人类对开放式常识性问题的回答的可行性。我们通过进行针对神经质的实验来评估人格评估的Persense算法的性能,这是心理健康分析中重要的人格特质,并通过收集不同神经质得分的多样化人群的数据来预防心理健康分析和自杀。我们的分析表明,算法与地面真实数据达到了可比的结果。具体而言,当置信因子(第一个猜测概率的对数比率)大于3时,PDF方法的准确性大于3。此外,ML方法获得了其最高准确性(82.2%),具有多层perceptron分类器。为了评估常识性推理分析的可行性,我们训练ML算法以预测对常识性问题的回答。我们对与300名参与者收集的数据的分析表明,Persense使用随机森林分类器预测,准确度为82.3%的常识性问题。
This article presents PerSense, a framework to estimate human personality traits based on expressed texts and to use them for commonsense reasoning analysis. The personality assessment approaches include an aggregated Probability Density Functions (PDF), and Machine Learning (ML) models. Our goal is to demonstrate the feasibility of using machine learning algorithms on personality trait data to predict humans' responses to open-ended commonsense questions. We assess the performance of the PerSense algorithms for personality assessment by conducting an experiment focused on Neuroticism, an important personality trait crucial in mental health analysis and suicide prevention by collecting data from a diverse population with different Neuroticism scores. Our analysis shows that the algorithms achieve comparable results to the ground truth data. Specifically, the PDF approach achieves 97% accuracy when the confidence factor, the logarithmic ratio of the first to the second guess probability, is greater than 3. Additionally, ML approach obtains its highest accuracy, 82.2%, with a multilayer Perceptron classifier. To assess the feasibility of commonsense reasoning analysis, we train ML algorithms to predict responses to commonsense questions. Our analysis of data collected with 300 participants demonstrate that PerSense predicts answers to commonsense questions with 82.3% accuracy using a Random Forest classifier.