论文标题

通过多个相机域的适应性计数无监督的车辆

Unsupervised Vehicle Counting via Multiple Camera Domain Adaptation

论文作者

Ciampi, Luca, Santiago, Carlos, Costeira, Joao Paulo, Gennaro, Claudio, Amato, Giuseppe

论文摘要

监视城市的车辆流动对于改善城市环境和公民生活质量至关重要。图像是感知和评估大面积车辆流动的最佳感应方式。当前用于在大量注释数据上取决于图像中车辆计数的技术,随着新摄像机的添加到系统中,它们可阻止其对城市规模的可扩展性。在处理物理系统和机器学习和AI的关键研究领域时,这是一个经常出现的问题。我们提出并讨论了一种新方法,以设计基于图像的车辆密度估计器,而这些方法很少通过多个相机域的适应来标记数据。

Monitoring vehicle flows in cities is crucial to improve the urban environment and quality of life of citizens. Images are the best sensing modality to perceive and assess the flow of vehicles in large areas. Current technologies for vehicle counting in images hinge on large quantities of annotated data, preventing their scalability to city-scale as new cameras are added to the system. This is a recurrent problem when dealing with physical systems and a key research area in Machine Learning and AI. We propose and discuss a new methodology to design image-based vehicle density estimators with few labeled data via multiple camera domain adaptations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源