论文标题
非线性Neumann问题的积极解决方案,具有单数术语和对流的问题
Positive solutions for nonlinear Neumann problems with singular terms and convection
论文作者
论文摘要
我们认为由$ p $ -laplacian驱动的非线性诺伊曼问题。在反应术语中,我们具有单数和对流术语的竞争效果。使用基于Leray-Schauder替代原理的拓扑方法以及合适的截断和比较技术,我们表明该问题具有正平滑的解决方案。
We consider a nonlinear Neumann problem driven by the $p$-Laplacian. In the reaction term we have the competing effects of a singular and a convection term. Using a topological approach based on the Leray-Schauder alternative principle together with suitable truncation and comparison techniques, we show that the problem has positive smooth solutions.