论文标题

网络上等等流量的新耦合条件

New Coupling Conditions for Isentropic Flow on Networks

论文作者

Holle, Yannick, Herty, Michael, Westdickenberg, Michael

论文摘要

我们基于连接处的人造密度引入了网络上等递流的新耦合条件。新的耦合条件可以通过在能量耗散的情况下从动力学模型中得出。证明了对普遍的Riemann和Cauchy问题的解决方案的存在和独特性。普遍的Riemann问题的结果在全球范围内。此外,证明了连接处的非进攻能量和最大原理。给出了一个数字示例,其中新条件是导致物理正确波动类型的唯一已知条件。该方法概括为完全的气体动态。

We introduce new coupling conditions for isentropic flow on networks based on an artificial density at the junction. The new coupling conditions can be derived from a kinetic model by imposing a condition on energy dissipation. Existence and uniqueness of solutions to the generalized Riemann and Cauchy problem are proven. The result for the generalized Riemann problem is globally in state space. Furthermore, non-increasing energy at the junction and a maximum principle are proven. A numerical example is given in which the new conditions are the only known conditions leading to the physically correct wave types. The approach generalizes to full gas dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源