论文标题
调整多分散聚合物网络的选择性渗透性
Tuning the Selective Permeability of Polydisperse Polymer Networks
论文作者
论文摘要
我们使用粗糙的,隐性的溶解计算机模拟研究了由多分散聚合物网络制成的分子渗透物转运的模型膜的渗透性和选择性(“允许选择”)。 The permeability $\mathcal P$ is determined on the linear-response level using the solution-diffusion model, $\mathcal P = {\mathcal K}D_\text{in}$, $\textit{i.e.}$, by calculating the equilibrium penetrant partition ratio $\mathcal K$ and penetrant diffusivity $D_\text{in}$在膜内。我们改变了两个关键参数,即控制网络肿胀和崩溃程度的单体传导剂相互作用,以及单体 - 渗透剂相互作用,它调节了渗透剂的吸收和显微镜能量环境,以进行扩散运输。分区比率$ \ Mathcal K $的结果涵盖了四个数量级,是非单调的,而不是参数,这是通过将一种渗透物从散装转移到聚合物培养基中的二阶病毒膨胀来很好地解释的。我们发现,与高度有序的膜结构相比,PolyDisperse网络中的渗透剂扩散率$ d_ \ text {in} $表现出相对简单的指数衰减,并服从众所周知的自由销售和克莱默斯的逃生量表。因此,最终产生的渗透性$ \ Mathcal P $类似于分区的定性功能行为(包括最大化和最小化)。但是,分区和扩散是抗相关的,产生了大量的定量取消,通过网络密度和相互作用来控制和微调,这是我们的缩放定律合理化的。结果,我们最终证明,即使是穿透力网络相互作用的小变化,$ \ textit {e.g。} $,一半是$ k_ \ text {b} t $,几乎可以通过几乎一个巨大的顺序修改膜的允许选择性。
We study the permeability and selectivity (`permselectivity') of model membranes made of polydisperse polymer networks for molecular penetrant transport, using coarse-grained, implicit-solvent computer simulations. The permeability $\mathcal P$ is determined on the linear-response level using the solution-diffusion model, $\mathcal P = {\mathcal K}D_\text{in}$, $\textit{i.e.}$, by calculating the equilibrium penetrant partition ratio $\mathcal K$ and penetrant diffusivity $D_\text{in}$ inside the membrane. We vary two key parameters, namely the monomer-monomer interaction, which controls the degree of swelling and collapse of the network, and the monomer-penetrant interaction, which tunes the penetrant uptake and microscopic energy landscape for diffusive transport. The results for the partition ratio $\mathcal K$ cover four orders of magnitude and are non-monotonic versus the parameters, which is well interpreted by a second-order virial expansion of the free energy of transferring one penetrant from bulk into the polymeric medium. We find that the penetrant diffusivity $D_\text{in}$ in the polydisperse networks, in contrast to highly ordered membrane structures, exhibits relatively simple exponential decays and obeys well-known free-volume and Kramers' escape scaling laws. The eventually resulting permeability $\mathcal P$ thus resembles the qualitative functional behavior (including maximization and minimization) of the partitioning. However, partitioning and diffusion are anti-correlated, yielding large quantitative cancellations, controlled and fine-tuned by the network density and interactions as rationalized by our scaling laws. As a consequence, we finally demonstrate that even small changes of penetrant-network interactions, $\textit{e.g.}$, by half a $k_\text{B}T$, modify the permselectivity of the membrane by almost one order of magnitude.