论文标题
异常的分数量子厅效应和多价汉密尔顿人
Anomalous fractional quantum Hall effect and multi-valued Hamiltonians
论文作者
论文摘要
我们讨论没有外部磁场的异常分数量子厅效应。我们建议,这种系统中的激发可以通过与分支切割的布里鲁因区定义的汉密尔顿人的非相互作用颗粒有效地描述。这种系统的霍尔电导率通过一粒子绿色功能表达。我们证明,对于拟议类型的哈密顿量,此表达式需要分数值的时间klitzing常数。还讨论了拟议的建筑与基态退化的可能关系。
We discuss anomalous fractional quantum Hall effect that exists without external magnetic field. We propose that excitations in such systems may be described effectively by non-interacting particles with the Hamiltonians defined on the Brillouin zone with a branch cut. Hall conductivity of such a system is expressed through the one-particle Green function. We demonstrate that for the Hamiltonians of the proposed type this expression takes fractional values times Klitzing constant. Possible relation of the proposed construction with degeneracy of ground state is discussed as well.