论文标题
隐私保护分布式概率负载流量
Privacy-preserving Distributed Probabilistic Load Flow
论文作者
论文摘要
概率负载流(PLF)允许评估可再生能源在系统操作中引入的不确定性。理想情况下,PLF计算是针对需要传输线和节点负载/生成的所有参数的整个网格实现的。但是,在多区域互连网格中,跨区域的独立系统运营商(ISO)可能不会与其他ISO共享其各自区域的参数。因此,挑战是如何确定区域网格中的流量与不确定的区域的不确定能力注入可再生生成来源之间的功能关系,而没有有关整个网格的全部信息。为了克服这一挑战,我们首先提出了每个ISO的基于投影的共识算法,以计算所需功能关系的相应系数矩阵。然后,我们利用具有隐私的加速平均共识算法来允许每个ISO获得相同关系的相应常数向量。使用两种算法,我们最终为每种ISO提供了一个隐私保护分布式PLF方法,以分析以完全分布的方式分析其区域关节PLF,而无需向其他ISO揭示其参数。通过对IEEE 118-BUS系统的案例研究来验证所提出方法的正确性,有效性和效率。
Probabilistic load flow (PLF) allows to evaluate uncertainties introduced by renewable energy sources on system operation. Ideally, the PLF calculation is implemented for an entire grid requiring all the parameters of the transmission lines and node load/generation to be available. However, in a multi-regional interconnected grid, the independent system operators (ISOs) across regions may not share the parameters of their respective areas with other ISOs. Consequently, the challenge is how to identify the functional relationship between the flows in the regional grid and the uncertain power injections of renewable generation sources across regions without full information about the entire grid. To overcome this challenge, we first propose a privacy-preserving distributed accelerated projection-based consensus algorithm for each ISO to calculate the corresponding coefficient matrix of the desired functional relationship. Then, we leverage a privacy-preserving accelerated average consensus algorithm to allow each ISO to obtain the corresponding constant vector of the same relationship. Using the two algorithms, we finally derive a privacy-preserving distributed PLF method for each ISO to analytically obtain its regional joint PLF in a fully distributed manner without revealing its parameters to other ISOs. The correctness, effectiveness, and efficiency of the proposed method are verified through a case study on the IEEE 118-bus system.