论文标题

复合优化的随机原始双固定点方法

Stochastic primal dual fixed point method for composite optimization

论文作者

YaNanZhu, XiaoqunZhang

论文摘要

在本文中,我们提出了一种随机原始双固定点法(SPDFP),用于求解两个适当的下半连续凸功能的总和,其中一种是复合材料。该方法基于[7]中提出的原始双固定点法(PDFP),该方法不需要子问题解决。在某种温和的条件下,基于两组假设建立了收敛:有界和无限的梯度以及迭代预期误差的收敛速率是O(k^α),其中k是迭代的数量,而α\ in(0,1)。最后,在图形lasso和logistic Recression上,有效地提出了该提议的有效性。

In this paper we propose a stochastic primal dual fixed point method (SPDFP) for solving the sum of two proper lower semi-continuous convex function and one of which is composite. The method is based on the primal dual fixed point method (PDFP) proposed in [7] that does not require subproblem solving. Under some mild condition, the convergence is established based on two sets of assumptions: bounded and unbounded gradients and the convergence rate of the expected error of iterate is of the order O(k^α) where k is iteration number and α\in (0, 1]. Finally, numerical examples on graphic Lasso and logistic regressions are given to demonstrate the effectiveness of the proposed algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源