论文标题

对Hedetniemi的猜想相对较小的反例

Relatively small counterexamples to Hedetniemi's conjecture

论文作者

Zhu, Xuding

论文摘要

Hedetniemi在1966年猜想,所有图形$ g $和$ h $χ(g \ times h)= \ min \ {χ(g),χ(H)\} $。这里$ g \ times h $是带有顶点套装$ v(g)\ times v(h)$的图形,当时$(x,y)$和$(x',y')$相邻,并且仅当e(g)$ in(g)$和$ yy'\ in E(h)$中。在过去的半个世纪中,这个猜想引起了很多关注。 最近,Shitov驳斥了这一猜想。 令$ p $为奇数$ 7 $的最小顶点,而分数色度大于$ 3+4/(p-1)$。 Shitov的证明表明,Hedetniemi的猜想因某些图表而失败,其色度约为$ p^22^{p+1} $,并且大约$(p^22^{p+1})^{p^32^{p-1}}} $ Vertices。在本文中,我们表明,猜想已经失败了某些图$ g $和$ h $,带有色数$ 3 \ lceil \ frac {p+1} 2 \ rceil $以及$ p \ lceil(p-1)/2 \ rceil $和$ 3 \ lceil $ and $ 3 \ lceil \ frac \ frac {p+1} 2 \ rceiL(目前以$ p $的上限为$ 148 $。因此,Hedetniemi的猜想因某些图表$ g $和$ h $而失败,$ g $,$ 225 $,分别为$ 10,952 $和$ 33,377 $的顶点。

Hedetniemi conjectured in 1966 that $χ(G \times H) = \min\{χ(G), χ(H)\}$ for all graphs $G$ and $H$. Here $G\times H$ is the graph with vertex set $ V(G)\times V(H)$ defined by putting $(x,y)$ and $(x',y')$ adjacent if and only if $xx'\in E(G)$ and $yy'\in E(H)$. This conjecture received a lot of attention in the past half century. Recently, Shitov refuted this conjecture. Let $p$ be the minimum number of vertices in a graph of odd girth $7$ and fractional chromatic number greater than $3+4/(p-1)$. Shitov's proof shows that Hedetniemi's conjecture fails for some graphs with chromatic number about $p^22^{p+1} $ and with about $(p^22^{p+1})^{p^32^{p-1}} $ vertices. In this paper, we show that the conjecture fails already for some graphs $G$ and $H$ with chromatic number $3\lceil \frac {p+1}2 \rceil $ and with $p \lceil (p-1)/2 \rceil$ and $3 \lceil \frac {p+1}2 \rceil (p+1)-p$ vertices, respectively. The currently known upper bound for $p$ is $148$. Thus Hedetniemi's conjecture fails for some graphs $G$ and $H$ with chromatic number $225$, and with $10,952$ and $33,377$ vertices, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源