论文标题

微生物活动物质:拓扑框架

Microbial Active Matter: A Topological Framework

论文作者

Sengupta, Anupam

论文摘要

拓扑超越了常规描述物理,生物学和工程科学的边界。我们数学描述拓扑的能力,结合了我们获得精确跟踪和操纵方法的访问,引发了人们对拓扑分析的全新欣赏,特别是在介导的生物系统中介导的关键功能跨越了长度和时间尺度。微生物生态系统是一个经常遇到的生物的例子,提供了丰富的测试床,可以在微生物组成,结构和功能的背景下探索拓扑缺陷及其力学的作用。这种结构化的,平衡系统的各向异性和活性特征触发的紧急过程是微生物系统中的基本基础。各向异性的必然结果是远程定向(或位置)相关性,这会导致由于自发对称性破坏而导致拓扑缺陷核定。这个新兴的跨学科领域的场景窃取者是拓扑缺陷:嵌入在材料领域中的奇异性,即引起小说(即使不是出乎意料)的动态,这些动态是基于软化和生活物质系统的主动过程的核心。在这篇简短的评论中,我汇总了最近的关键进展,该进步突出了液晶物理学的界面和微生物的物理生态。并将其与关于连钉物种的原始实验数据相结合,以证明该界面如何提供生物物理框架,可以帮助解码和利用“真实”生态环境中的主动微生物过程。拓扑及其功能表现形式(一个至关重要的主题)为实验家和理论家都愿意在规模和学科中度过激动人心的旅程提供了丰富的机会。

Topology transcends boundaries that conventionally delineate physical, biological and engineering sciences. Our ability to mathematically describe topology, combined with our access to precision tracking and manipulation approaches, has triggered a fresh appreciation of topological ramifications, specifically in mediating key functions in biological systems spanning orders of magnitude in length and time scales. Microbial ecosystems, a frequently encountered example of living matter, offer a rich test bed where the role of topological defects and their mechanics can be explored in the context of microbial composition, structure and functions. Emergent processes, triggered by anisotropy and activity characteristic of such structured, out-of-equilibrium systems, underpin fundamental properties in microbial systems. An inevitable consequence of anisotropy is the long-range orientational (or positional) correlations, which give rise to topological defects nucleating due to spontaneous symmetry breaking. The scene stealer of this emerging cross-disciplinary field is the topological defects: singularities embedded within the material field that elicit novel, if not unexpected, dynamics that are at the heart of active processes underpinning soft and living matter systems. In this short review, I have put together a summary of the key recent advances that highlight the interface of liquid crystal physics and the physical ecology of microbes; and combined it with original experimental data on sessile species as a case to demonstrate how this interface offers a biophysical framework that could help to decode and harness active microbial processes in 'true' ecological settings. Topology and its functional manifestations - a crucial and well-timed topic - offer a rich opportunity for both experimentalists and theoreticians willing to take up an exciting journey across scales and disciplines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源