论文标题

磁性磁盘中的粉尘颗粒的新生长机制,带有磁性磁盘

New growth mechanism of dust grains in protoplanetary disks with magnetically driven disk winds

论文作者

Taki, Tetsuo, Kuwabara, Koh, Kobayashi, Hiroshi, Suzuki, Takeru K.

论文摘要

我们发现了在原行星磁盘中,通过粘性积聚和磁驱动的磁盘风(MDWS)进化的粉尘晶粒的新生长模式。我们通过一维模型解决了尘埃晶粒的近似凝血方程,该圆盘由气体和固体成分组成。随着晶粒的生长,所有固体颗粒最初都通过气阻力向内向中心恒星漂移。但是,MDW以内而外的方式分散气体的MDW修饰了气压的径向轮廓,即$ P $。因此,固体颗粒的局部浓度是由位于$ p $的凸向上曲线在位置漂流尘埃晶粒的聚合径向通量所产生的。当无量纲停止时间($ {\ rm st} $时,超过统一,固体颗粒自发地达到了生长状态,因为被抑制的径向漂移与从外部漂移的灰尘颗粒的增强积聚之间的积极反馈。一旦实心粒子处于漂移有限的状态,上述条件为$ {\ rm st} \ gtrsim 1 $,用于灰尘生长与\ begin {equation}相等 Σ_{\rm d}/Σ_{\rm g}\gtrsim η, \nonumber \end{equation} where $Σ_{\rm d}/Σ_{\rm g}$ is the dust-to-gas surface-density ratio and $η$ is dimensionless radial pressure-gradient force.由于粉尘晶粒的成功生长,在原球星盘的内部形成了一个包含行星大小体的环形结构。这样的环形浓度有望在随后的行星形成中起着至关重要的作用。

We discovered a new growth mode of dust grains to km-sized bodies in protoplanetary disks that evolve by viscous accretion and magnetically driven disk winds (MDWs). We solved an approximate coagulation equation of dust grains with time-evolving disks that consist of both gas and solid components by a one-dimensional model. With the grain growth, all solid particles initially drift inward toward the central star by the gas drag force. However, the radial profile of gas pressure, $P$, is modified by the MDW that disperses the gas in an inside-out manner. Consequently, a local concentration of solid particles is created by the converging radial flux of drifting dust grains at the location with the convex upward profile of $P$. When the dimensionless stopping time, ${\rm St}$, there exceeds unity, the solid particles spontaneously reach the growth dominated state because of the positive feedback between the suppressed radial drift and the enhanced accumulation of dust particles that drift from the outer part. Once the solid particles are in the drift limited state, the above-mentioned condition of ${\rm St} \gtrsim 1$ for the dust growth is equivalent with \begin{equation} Σ_{\rm d}/Σ_{\rm g}\gtrsim η, \nonumber \end{equation} where $Σ_{\rm d}/Σ_{\rm g}$ is the dust-to-gas surface-density ratio and $η$ is dimensionless radial pressure-gradient force. As a consequence of the successful growth of dust grains, a ring-like structure containing planetesimal-sized bodies is formed at the inner part of the protoplanetary disks. Such a ring-shaped concentration of planetesimals is expected to play a vital role in the subsequent planet formation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源