论文标题
有限的不可约合的保形模块上的谎言同级超级级$ \ MATHCAL {s}(p)$
Finite irreducible conformal modules over the Lie conformal superalgebra $\mathcal{S}(p)$
论文作者
论文摘要
在本文中,我们介绍了一类无限的谎言保形超级级别$ \ mathcal {s}(p)$,它们与\ cite {chs}中定义的扩展块类型的谎言保形代数密切相关。然后,$ p \ in \ c^*$上的$ \ mathcal {s}(p)$上的所有有限的非平凡的不可约合的共形模块都是完全分类的。作为一个应用程序,我们还介绍了有限的非平凡不可约合模块的分类。此外,作为$ \ Mathcal {s}(p)$的广义版本,构建了无限的谎言谎言coldormal Superalgebras $ \ Mathcal {gs}(p)$,它们具有subergebra subergebra subergebra in Timorpormal lie Sypormal Algebra of $ n = 2 $ n = 2 $ n = 2 $ n = 2 $ superconformal algebra。
In the present paper, we introduce a class of infinite Lie conformal superalgebras $\mathcal{S}(p)$, which are closely related to Lie conformal algebras of extended Block type defined in \cite{CHS}. Then all finite non-trivial irreducible conformal modules over $\mathcal{S}(p)$ for $p\in\C^*$ are completely classified. As an application, we also present the classifications of finite non-trivial irreducible conformal modules over finite quotient algebras $\mathfrak{s}(n)$ for $n\geq1$ and $\mathfrak{sh}$ which is isomorphic to a subalgebra of Lie conformal algebra of $N=2$ superconformal algebra. Moreover, as a generalized version of $\mathcal{S}(p)$, the infinite Lie conformal superalgebras $\mathcal{GS}(p)$ are constructed, which have a subalgebra isomorphic to the finite Lie conformal algebra of $N=2$ superconformal algebra.