论文标题
RICCI形式,Kähler-ineinstein结构和Teichmüller空间的矩图解释
A moment map interpretation of the Ricci form, Kähler--Einstein structures, and Teichmüller spaces
论文作者
论文摘要
本文调查了矩图在Kähler几何形状中的作用。第一部分将RICCI形式作为矩图讨论,然后继续进行矩图,以矩映射Kähler-einstein条件和标态曲率的解释(Quillen--Fujiki-Donaldson)。第二部分研究了这些结果对各种Teichmüller空间及其Weil-Petersson的合成形式的影响,并解释了这些结果是如何自然而然地构建sys成直型商的。第三部分讨论了唐纳森在Fano复合结构空间中介绍的符合形式。
This paper surveys the role of moment maps in Kähler geometry. The first section discusses the Ricci form as a moment map and then moves on to moment map interpretations of the Kähler--Einstein condition and the scalar curvature (Quillen--Fujiki--Donaldson). The second section examines the ramifications of these results for various Teichmüller spaces and their Weil--Petersson symplectic forms and explains how these arise naturally from the construction of symplectic quotients. The third section discusses a symplectic form introduced by Donaldson on the space of Fano complex structures.