论文标题
对流量预测的深入学习:方法,分析和未来方向
Deep Learning on Traffic Prediction: Methods, Analysis and Future Directions
论文作者
论文摘要
流量预测在智能运输系统中起着至关重要的作用。准确的交通预测可以帮助路线策划,指导车辆调度并减轻交通拥堵。由于道路网络中不同地区之间复杂而动态的时空依赖关系,因此这个问题具有挑战性。最近,大量的研究工作已用于该领域,尤其是深度学习方法,极大地提高了交通预测能力。本文的目的是从多个角度对流量预测中的深度学习方法进行全面调查。具体而言,我们首先总结了现有的流量预测方法,并提供分类法。其次,我们在不同的流量预测应用程序中列出了最新方法。第三,我们全面收集和组织了现有文献中广泛使用的公共数据集,以促进其他研究人员。此外,我们通过进行广泛的实验来比较现实世界公共数据集上不同方法的性能进行评估和分析。最后,我们讨论了这一领域的公开挑战。
Traffic prediction plays an essential role in intelligent transportation system. Accurate traffic prediction can assist route planing, guide vehicle dispatching, and mitigate traffic congestion. This problem is challenging due to the complicated and dynamic spatio-temporal dependencies between different regions in the road network. Recently, a significant amount of research efforts have been devoted to this area, especially deep learning method, greatly advancing traffic prediction abilities. The purpose of this paper is to provide a comprehensive survey on deep learning-based approaches in traffic prediction from multiple perspectives. Specifically, we first summarize the existing traffic prediction methods, and give a taxonomy. Second, we list the state-of-the-art approaches in different traffic prediction applications. Third, we comprehensively collect and organize widely used public datasets in the existing literature to facilitate other researchers. Furthermore, we give an evaluation and analysis by conducting extensive experiments to compare the performance of different methods on a real-world public dataset. Finally, we discuss open challenges in this field.