论文标题
经典的INCE高斯模式
Classically-entangled Ince-Gaussian modes
论文作者
论文摘要
复杂的矢量光模式,在其空间和极化程度(DOF)上具有经典状态,在大量的研究领域中使无处不在。至关重要的是,虽然极化仅限于BI-Dimensionalspace,但空间模式是无界模式的,但可以由波动方程的任何解决方案集可以支持不同的坐标系。在这里,我们报告了具有椭圆形对称性的一类矢量梁,其中thespatial dof被编码在圆柱椭圆形坐标的Ince-Gaussian模式中。我们概述了它们在高阶Poincaré球体上的几何表现,展示了它们的实验生成,并通过Stokes polarimetry分析了生成的模式的质量。我们预计,这种矢量模式将具有很大的相关性侵蚀,例如光学操纵,激光材料处理以及其他等方面的光学通信。
Complex vector light modes, classically-entangled in their spatial and polarisation degrees of freedom (DoF), havebecome ubiquitous in a vast diversity of research fields. Crucially, while polarisation is limited to a bi-dimensionalspace, the spatial mode is unbounded, it can be specified by any of the sets of solutions the wave equation can supportin the different coordinate systems. Here we report on a class of vector beams with elliptical symmetry where thespatial DoF is encoded in the Ince-Gaussian modes of the cylindrical elliptical coordinates. We outline their geometricrepresentation on the Higher-Order Poincaré Sphere, demonstrate their experimental generation and analyse the qualityof the generated modes via Stokes polarimetry. We anticipate that such vector modes will be of great relevance inapplications, such as, optical manipulations, laser material processing and optical communications amongst others.