论文标题

在连接图和树的最大ABC光谱半径上

On the Maximum ABC Spectral Radius of Connected Graphs and Trees

论文作者

Lin, Wenshui, Zheng, Yiming, Fu, Peifang, Yan, Zhangyong, Liu, Jia-Bao

论文摘要

令$ g =(v,e)$为连接的图,其中$ v = \ {v_1,v_2,\ cdots,v_n \} $和$ m = | e | $。 $ d_i $将表示$ g $的顶点$ v_i $的程度,$δ= \ max_ {1 \ leq i \ leq n} d_i $。 $ g $的ABC矩阵定义为$ m(g)=(m_ {ij})_ {n \ times n} $,其中$ m_ {ij} = \ sqrt {(d_i + d_i + d_j -2)/(d_i + d_i d_i d_i d_j)} $ if $ v_i v_i v_j v_j \ $否则, $ m(g)$的最大特征值称为$ g $的ABC光谱半径,由$ρ_{abc}(g)$表示。最近,该图不变引起了一些注意。我们证明$ρ_{abc}(g)\ leq \ sqrt {δ+(2m-n+1)/δ-2} $。作为应用程序,确定了具有第二大ABC光谱半径的$ n \ geq 4 $顶点的唯一树。

Let $G=(V,E)$ be a connected graph, where $V=\{v_1, v_2, \cdots, v_n\}$ and $m=|E|$. $d_i$ will denote the degree of vertex $v_i$ of $G$, and $Δ=\max_{1\leq i \leq n} d_i$. The ABC matrix of $G$ is defined as $M(G)=(m_{ij})_{n \times n}$, where $m_{ij}=\sqrt{(d_i + d_j -2)/(d_i d_j)}$ if $v_i v_j \in E$, and 0 otherwise. The largest eigenvalue of $M(G)$ is called the ABC spectral radius of $G$, denoted by $ρ_{ABC}(G)$. Recently, this graph invariant has attracted some attentions. We prove that $ρ_{ABC}(G) \leq \sqrt{Δ+(2m-n+1)/Δ-2}$. As an application, the unique tree with $n \geq 4$ vertices having second largest ABC spectral radius is determined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源