论文标题

基于对话的关系提取

Dialogue-Based Relation Extraction

论文作者

Yu, Dian, Sun, Kai, Cardie, Claire, Yu, Dong

论文摘要

我们介绍了第一个基于人类对话的关系提取(RE)数据集对话框,旨在支持对话中出现的两个参数之间的关系的预测。我们进一步提供对话作为研究跨句子RE的平台,因为大多数事实涵盖了多个句子。我们认为,基于对基于对话和传统的RE任务之间的相似性和差异的分析,与说话者相关的信息在拟议的任务中起着至关重要的作用。考虑到对话中交流的及时性,我们设计了一个新的指标,以评估对话环境中RE方法的性能,并研究对话中的几种代表性RE方法的性能。实验结果表明,在表现最佳的模型上,说话者感知的扩展会导致标准和对话评估设置的提高。 Dialogre可从https://dataset.org/dialogre/获得。

We present the first human-annotated dialogue-based relation extraction (RE) dataset DialogRE, aiming to support the prediction of relation(s) between two arguments that appear in a dialogue. We further offer DialogRE as a platform for studying cross-sentence RE as most facts span multiple sentences. We argue that speaker-related information plays a critical role in the proposed task, based on an analysis of similarities and differences between dialogue-based and traditional RE tasks. Considering the timeliness of communication in a dialogue, we design a new metric to evaluate the performance of RE methods in a conversational setting and investigate the performance of several representative RE methods on DialogRE. Experimental results demonstrate that a speaker-aware extension on the best-performing model leads to gains in both the standard and conversational evaluation settings. DialogRE is available at https://dataset.org/dialogre/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源