论文标题
标量1循环Feynman积分作为时空维度D,II:特殊运动学
Scalar 1-loop Feynman integrals as meromorphic functions in space-time dimension d, II: Special kinematics
论文作者
论文摘要
基于[K。〜H.〜phan和T.〜riemann中开发的方法,Phys。\ Lett。\ b {\ bf 791}(2019)257],在本文中显示了标量二,三,三,四点积分的标量两环,四,四点积分的分析结果。计算被视为所有外部运动学配置和内部质量分配。分析公式以广义超几何序列(例如高斯$ _2F_1 $,appell $ f_1 $和lauricella $ f_s $ functions)表示。
Based on the method developed in [K.~H.~Phan and T.~Riemann, Phys.\ Lett.\ B {\bf 791} (2019) 257], detailed analytic results for scalar one-loop two-, three-, four-point integrals in general $d$-dimension are presented in this paper. The calculations are considered all external kinematic configurations and internal mass assignments. Analytic formulas are expressed in terms of generalized hypergeometric series such as Gauss $_2F_1$, Appell $F_1$ and Lauricella $F_S$ functions.