论文标题

关于在凸多面体上加权空间上某些流体模型的分析和近似

On the analysis and approximation of some models of fluids over weighted spaces on convex polyhedra

论文作者

Otarola, Enrique, Salgado, Abner

论文摘要

我们在加权Sobolev空间上研究了凸多面体结构域的Stokes问题。假定权重属于$ q \ in(1,\ infty)$的$ q \ for $ q \ for Muckenhoupt类$ a_q $。我们表明,对于所有$ Q $,Stokes问题都很好。此外,我们表明有限元stokes投影在加权空间上是稳定的。借助这些工具,我们为某些类别的非牛顿流体提供了良好的和近似结果。

We study the Stokes problem over convex polyhedral domains on weighted Sobolev spaces. The weight is assumed to belong to the Muckenhoupt class $A_q$ for $q \in (1,\infty)$. We show that the Stokes problem is well-posed for all $q$. In addition, we show that the finite element Stokes projection is stable on weighted spaces. With the aid of these tools, we provide well-posedness and approximation results to some classes of non-Newtonian fluids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源