论文标题

一种增强对抗性恶意软件的深层神经网络的框架

A Framework for Enhancing Deep Neural Networks Against Adversarial Malware

论文作者

Li, Deqiang, Li, Qianmu, Ye, Yanfang, Xu, Shouhuai

论文摘要

已知基于机器学习的恶意软件检测容易受到对抗性逃避攻击的影响。最新的是,没有有效的防御能力抵抗这些攻击。作为对MIT Lincoln Lab组织的对抗性恶意软件分类挑战的回应,并与AAAI-19-19-19S有关网络安全的人工智能研讨会有关(AICS'2019),我们提出了六种指导原则,以增强深神经网络的鲁棒性。这些原则中的一些已经散布在文献中,但第一次在本文中引入了其他原则。在这六个原则的指导下,我们提出了一个防御框架,以增强深层神经网络的鲁棒性,以防止对抗性恶意软件逃避攻击。通过使用Drebin Android恶意软件数据集进行实验,我们表明该框架可以针对Grey-Box攻击达到98.49%的准确性(平均),在这种情况下,攻击者知道有关辩护人的一些信息,并且辩护人知道一些有关攻击的信息,并且对辩护人的攻击更为有能力的攻击,在攻击方面攻击了一些攻击,攻击了攻击者,攻击了所有攻击者,攻击了一切。该框架通过达到76.02%的精度来赢得AICS'2019挑战,而攻击者(即挑战组织者)都不知道框架或防守,我们(辩护人)都不知道攻击。这个差距突出了了解攻击的重要性。

Machine learning-based malware detection is known to be vulnerable to adversarial evasion attacks. The state-of-the-art is that there are no effective defenses against these attacks. As a response to the adversarial malware classification challenge organized by the MIT Lincoln Lab and associated with the AAAI-19 Workshop on Artificial Intelligence for Cyber Security (AICS'2019), we propose six guiding principles to enhance the robustness of deep neural networks. Some of these principles have been scattered in the literature, but the others are introduced in this paper for the first time. Under the guidance of these six principles, we propose a defense framework to enhance the robustness of deep neural networks against adversarial malware evasion attacks. By conducting experiments with the Drebin Android malware dataset, we show that the framework can achieve a 98.49\% accuracy (on average) against grey-box attacks, where the attacker knows some information about the defense and the defender knows some information about the attack, and an 89.14% accuracy (on average) against the more capable white-box attacks, where the attacker knows everything about the defense and the defender knows some information about the attack. The framework wins the AICS'2019 challenge by achieving a 76.02% accuracy, where neither the attacker (i.e., the challenge organizer) knows the framework or defense nor we (the defender) know the attacks. This gap highlights the importance of knowing about the attack.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源