论文标题

有效的Bernoulli工厂MCMC用于顽固的后代

Efficient Bernoulli factory MCMC for intractable posteriors

论文作者

Vats, Dootika, Gonçalves, Flávio, Łatuszyński, Krzysztof, Roberts, Gareth O.

论文摘要

基于接受拒绝的马尔可夫链蒙特卡洛(MCMC)算法传统上使用了接受概率,这些概率可以明确地写入两个有争议点的目标密度之比的函数。在功能不明的贝叶斯后期中,此功能几乎没有用。我们介绍了一个新的MCMC接受概率家族,该家族的特征具有不同的特征,即在两个点处的目标密度比。我们提出了两个稳定的Bernoulli工厂,它们在此类接受概率中产生事件。我们方法的效率依赖于目标密度上的合理局部上限或下限,我们提出了两类的问题,在这些问题上是可行的:贝叶斯对扩散的推断和在约束空间上的MCMC。由此产生的Portkey Barker算法精确,计算比当前最新的算法更有效。

Accept-reject based Markov chain Monte Carlo (MCMC) algorithms have traditionally utilised acceptance probabilities that can be explicitly written as a function of the ratio of the target density at the two contested points. This feature is rendered almost useless in Bayesian posteriors with unknown functional forms. We introduce a new family of MCMC acceptance probabilities that has the distinguishing feature of not being a function of the ratio of the target density at the two points. We present two stable Bernoulli factories that generate events within this class of acceptance probabilities. The efficiency of our methods rely on obtaining reasonable local upper or lower bounds on the target density and we present two classes of problems where such bounds are viable: Bayesian inference for diffusions and MCMC on constrained spaces. The resulting portkey Barker's algorithms are exact and computationally more efficient that the current state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源