论文标题

非本地无幽灵重力中的超级旋转对象

Ultrarelativistic spinning objects in non-local ghost-free gravity

论文作者

Boos, Jens, Soto, Jose Pinedo, Frolov, Valeri P.

论文摘要

我们研究了具有较高衍生物的重力理论中超层化旋转物体(Gyratons)的重力场。特别是,我们专注于一类特殊的理论,这些理论具有无限数量的衍生物,称为“无鬼重力”,其中包括$ \ exp( - \ box \ ell^2)$等非本地形式,其中$ \ ell $是非局限性的规模。首先,我们获得用于固定旋转对象的线性无幽灵方程的解决方案。为了获得Gyraton解决方案,我们提高了这些指标并采用其penrose限制。这种方法使我们能够对任何数量的时空维度执行计算。所有溶液在Gyraton轴上都是常规的。在四个维度中,当比例非本地性$ \ ell $趋于零时,获得的Gyraton解决方案正确地重现了Aichelburg-Sexl Metric及其对Bonnor早期旋转来源的概括。我们还研究了获得的四维和高维无幽灵的吉拉顿指标的性能,并简要讨论了它们的可能应用。

We study the gravitational field of ultrarelativistic spinning objects (gyratons) in a modified gravity theory with higher derivatives. In particular, we focus on a special class of such theories with an infinite number of derivatives known as "ghost-free gravity" that include a non-local form factor such as $\exp(-\Box\ell^2)$, where $\ell$ is the scale of non-locality. First, we obtain solutions of the linearized ghost-free equations for stationary spinning objects. To obtain gyraton solutions we boost these metrics and take their Penrose limit. This approach allows us to perform calculations for any number of spacetime dimensions. All solutions are regular at the gyraton axis. In four dimensions, when the scale non-locality $\ell$ tends to zero, the obtained gyraton solutions correctly reproduce the Aichelburg--Sexl metric and its generalization to spinning sources found earlier by Bonnor. We also study the properties of the obtained four-dimensional and higher-dimensional ghost-free gyraton metrics and briefly discuss their possible applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源