论文标题

log-lipschitz子捆绑的Frobenius定理

The Frobenius Theorem for Log-Lipschitz Subbundles

论文作者

Yao, Liding

论文摘要

我们使用广义函数扩展了对非lipschitz切线子捆绑的定义。当Subbundle为log-lipschitz时,我们证明了Frobenius定理的规律性估计:如果$ \ \ \ \ m rathcal v $是log-lipschitz的log-lipschitz complate cang $ r $ r $ r $的参与分支,那么对于任何$ \ varepsilon> 0 $,在本地,有一个同源性$ m(u,v)$(u,v)$(u,v) $φ,\ frac {\partialφ} {\ partial u^1},\ dots,\ frac {\partialφ} {\ partial u^r} \ in c^{0,1- \ \ varepsilon} $ in C^{0,1- \ varepsilon} $,以及$ \ \ \ Mathcal v $ spand v $ spand v $ spand v $ $φ_*\ frac \ partial {\ partial u^1},\ dots,φ_*\ frac \ partial {\ partial u^r} $。

We extend the definition of involutivity to non-Lipschitz tangent subbundles using generalized functions. We prove the Frobenius Theorem with sharp regularity estimate when the subbundle is log-Lipschitz: if $\mathcal V$ is a log-Lipschitz involutive subbundle of rank $r$, then for any $\varepsilon>0$, locally there is a homeomorphism $Φ(u,v)$ such that $Φ,\frac{\partialΦ}{\partial u^1},\dots,\frac{\partialΦ}{\partial u^r}\in C^{0,1-\varepsilon}$, and $\mathcal V$ is spanned by the continuous vector fields $Φ_*\frac\partial{\partial u^1},\dots,Φ_*\frac\partial{\partial u^r}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源