论文标题

4D中的弱耦合共形歧管

Weakly coupled conformal manifolds in 4d

论文作者

Razamat, Shlomo S., Sabag, Evyatar, Zafrir, Gabi

论文摘要

我们将$ {\ cal n} = 1 $量规理论与简单量规组的四个维度进行分类,这些量规组具有通过弱耦合的保形流形。一旦人们允许在规格组下进行任意表示,就会发现各种各样的模型。对于每个这样的模型,我们详细介绍了保留在歧管的通用基因座上的保形歧管,保形异常和全局对称性的尺寸。我们还至少确定了保留比通用基因座更多的对称性的共形歧管的子层。讨论了分类应用的几个示例。特别是,我们考虑了一个保形试验,使得一个试验框架是一个$ USP(6)$仪表理论,在两个索引无可用的反对称表示中具有六个字段。我们讨论了一个形式的$ spin(5)$量规理论的IR双重二元,并在矢量表示中具有两个手性超级场,一个在14维表示中。最后,$ {\ cal n} = 2 $ class $ {\ cal s} $理论的保形歧管的扩展是通过对应于最大穿刺对应的对称的理论,并添加了两个相邻的chiral chiral超级场地。

We classify ${\cal N}=1$ gauge theories with simple gauge groups in four dimensions which possess a conformal manifold passing through weak coupling. A very rich variety of models is found once one allows for arbitrary representations under the gauge group. For each such model we detail the dimension of the conformal manifold, the conformal anomalies, and the global symmetry preserved on a generic locus of the manifold. We also identify, at least some, sub-loci of the conformal manifolds preserving more symmetry than the generic locus. Several examples of applications of the classification are discussed. In particular we consider a conformal triality such that one of the triality frames is a $USp(6)$ gauge theory with six fields in the two index traceless antisymmetric representation. We discuss an IR dual of a conformal $Spin(5)$ gauge theory with two chiral superfields in the vector representation and one in the fourteen dimensional representation. Finally, an extension of the conformal manifold of ${\cal N}=2$ class ${\cal S}$ theories by conformally gauging symmetries corresponding to maximal punctures with the addition of two adjoint chiral superfields is commented upon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源