论文标题

分裂元环$ p $ -groups的多个群体

The multiple holomorph of split metacyclic $p$-groups

论文作者

Tsang, Cindy

论文摘要

给定任何组$ g $,normalizer $ \ mathrm {hol}(g)$的左翻译子组中的所有排列$ g $的左图称为Holomorph,而normanizer $ \ Mathrm {nhol}(nHol}(g)$ of $ \ m m iathrm {h hol}(g)$ n hol holomorph in Chore ny Mulosorph。商$ t(g)= \ mathrm {nhol}(g)/\ mathrm {hol}(g)$已针对文献中各组$ g $的各个家庭计算。在本文中,我们将通过考虑有限的分配Metacyclic $ p $ - groups $ g $,并用$ p $ a奇数来补充现有结果。当$ g $满足某些温和条件时,我们可以为$ t(g)$的订单提供封闭式公式。我们的工作为$ t(g)$不是$ 2 $ group $ g $ $ g $的新家族提供了。

Given any group $G$, the normalizer $\mathrm{Hol}(G)$ of the subgroup of left translations in the group of all permutations on $G$ is called the holomorph, and the normalizer $\mathrm{NHol}(G)$ of $\mathrm{Hol}(G)$ in turn is called the multiple holomorph. The quotient $T(G) = \mathrm{NHol}(G)/\mathrm{Hol}(G)$ has been computed for various families of groups $G$ in the literature. In this paper, we shall supplement the existing results by considering finite split metacyclic $p$-groups $G $ with $p$ an odd prime. We are able to give a closed formula for the order of $T(G)$ when $G$ satisfies some mild conditions. Our work gives a new family of groups $G$ for which $T(G)$ is not a $2$-group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源