论文标题
拓扑绝缘体中锥体点的普遍存在
Ubiquity of conical points in topological insulators
论文作者
论文摘要
我们表明,通常,根据三个参数具有圆锥形结构,一个遗传学矩阵家族的变性。我们的结果适用于物质拓扑阶段的研究。这意味着二维拓扑绝缘子的绝热变形通常带有类似狄拉克的传播电流,其总电导率等于锥形点的手性。
We show that generically, the degeneracies of a family of Hermitian matrices depending on three parameters have a conical structure. Our result applies to the study of topological phases of matter. It implies that adiabatic deformations of two-dimensional topological insulators come generically with Dirac-like propagating currents, whose total conductivity equals the chiral number of conical points.