论文标题

Meshingnet:一种基于深度学习的新的网格生成方法

MeshingNet: A New Mesh Generation Method based on Deep Learning

论文作者

Zhang, Zheyan, Wang, Yongxing, Jimack, Peter K., Wang, He

论文摘要

我们介绍了一种新颖的方法,可以使用机器学习自动非结构化网格生成,以预测以前看不见的问题的最佳有限元网格。我们开发的框架是基于培训人工神经网络(ANN)来指导标准网格生成软件的基于对整个域所需的本地网格密度的预测。我们根据\ emph {a posteriori}误差估计的使用描述了提出的训练制度,并讨论了我们考虑的ANN的拓扑。然后,我们使用两个标准测试问题说明了性能,一个单个椭圆形部分微分方程(PDE)和与线性弹性相关的PDE系统。我们使用多种用户选择的误差规范,证明了任意多边形几何形状和一系列材料参数的高质量网格的有效生成。

We introduce a novel approach to automatic unstructured mesh generation using machine learning to predict an optimal finite element mesh for a previously unseen problem. The framework that we have developed is based around training an artificial neural network (ANN) to guide standard mesh generation software, based upon a prediction of the required local mesh density throughout the domain. We describe the training regime that is proposed, based upon the use of \emph{a posteriori} error estimation, and discuss the topologies of the ANNs that we have considered. We then illustrate performance using two standard test problems, a single elliptic partial differential equation (PDE) and a system of PDEs associated with linear elasticity. We demonstrate the effective generation of high quality meshes for arbitrary polygonal geometries and a range of material parameters, using a variety of user-selected error norms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源