论文标题

实时高光谱重建的MXR-U-NET

MXR-U-Nets for Real Time Hyperspectral Reconstruction

论文作者

Banerjee, Atmadeep, Palrecha, Akash

论文摘要

最近,CNN对图像产生,超分辨率和样式转移的应用做出了重大贡献。在本文中,我们基于霍华德和古格的作品,他等人。 Misra,D。并提出了一个CNN体系结构,该体系结构可以准确地重建来自RGB对应物的高光谱图像。我们还提出了最佳模型的较浅版本,相对内存足迹和更快的推断速度为10%,从而实现了实时视频应用程序,同时仍然只有大约0.5%的性能下降。

In recent times, CNNs have made significant contributions to applications in image generation, super-resolution and style transfer. In this paper, we build upon the work of Howard and Gugger, He et al. and Misra, D. and propose a CNN architecture that accurately reconstructs hyperspectral images from their RGB counterparts. We also propose a much shallower version of our best model with a 10% relative memory footprint and 3x faster inference, thus enabling real-time video applications while still experiencing only about a 0.5% decrease in performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源