论文标题
断开的洛但移动网络中的接触感知的机会数据转发
Contact-Aware Opportunistic Data Forwarding in Disconnected LoRaWAN Mobile Networks
论文作者
论文摘要
洛万(Lorawan)是领先的低功率广泛区域网络(LPWAN)体系结构之一。它最初是为由静态传感器或物联网(IoT)设备和静态网关组成的系统而设计的。最近已更新以引入新功能,例如纳米秒时间戳,该功能打开了应用程序,以使Lorawan能够用于移动设备跟踪和本地化。在这样的移动场景中,由于障碍物的干扰或深层褪色,设备可能会暂时失去与网关的通信,从而导致数据传输的吞吐量减少和延迟。为了克服这个问题,我们提出了一个新的数据转发方案。设备可以将数据转发到附近的设备,而这些设备与与网关接触的可能性更高,而不是持有数据。我们提出了一个名为“实时接触预期传输计数(RCA-ETX)的新网络度量”,以实时建模此联系概率。在没有对移动性模型进行任何假设的情况下,该度量利用数据传输延迟来建模复杂的设备移动性。我们还使用吞吐量 - 最佳的随机背压路由方案扩展了RCA-ETX,并提出了实时的机会性背压收集(ROBC),该协议是针对由与移动性相关的动力学产生的随机行为的协议。为了将我们的方法无缝地应用于支持Lorawan的设备,我们进一步提出了两个新的Larawan类,即基于Class-C和基于队列的Class-A。他们俩都与Lorawan A类设备兼容。我们的数据驱动实验基于伦敦总线网络,表明我们的方法可以将数据传输延迟延迟高达$ 25 \%$,并提供$ 53 \%$ $ $ $ $的数据传输性能改善。
LoRaWAN is one of the leading Low Power Wide Area Network (LPWAN) architectures. It was originally designed for systems consisting of static sensor or Internet of Things (IoT) devices and static gateways. It was recently updated to introduce new features such as nano-second timestamps which open up applications to enable LoRaWAN to be adopted for mobile device tracking and localisation. In such mobile scenarios, devices could temporarily lose communication with the gateways because of interference from obstacles or deep fading, causing throughput reduction and delays in data transmission. To overcome this problem, we propose a new data forwarding scheme. Instead of holding the data until the next contact with gateways, devices can forward their data to nearby devices that have a higher probability of being in contact with gateways. We propose a new network metric called Real-Time Contact-Aware Expected Transmission Count (RCA-ETX) to model this contact probability in real-time. Without making any assumption on mobility models, this metric exploits data transmission delays to model complex device mobility. We also extend RCA-ETX with a throughput-optimal stochastic backpressure routing scheme and propose Real-Time Opportunistic Backpressure Collection (ROBC), a protocol to counter the stochastic behaviours resulting from the dynamics associated with mobility. To apply our approaches seamlessly to LoRaWAN-enabled devices, we further propose two new LaRaWAN classes, namely Modified Class-C and Queue-based Class-A. Both of them are compatible with LoRaWAN Class-A devices. Our data-driven experiments, based on the London bus network, show that our approaches can reduce data transmission delays up to $25\%$ and provide a $53\%$ throughput improvement in data transfer performance.