论文标题

统计微结构描述符演变的随机减少阶模型

A stochastic reduced-order model for statistical microstructure descriptors evolution

论文作者

Tran, Anh, Sun, Jing, Liu, Dehao, Wildey, Tim, Wang, Yan

论文摘要

集成的计算材料工程(ICME)模型一直是现代材料开发的关键基础,可缓解对实验的严重依赖,并显着加速材料设计过程。但是,ICME模型在计算上也很昂贵,尤其是在动态的时间集成方面,这阻碍了长期尺度研究大型系统的统计集合和热力学特性的能力。为了减轻计算瓶颈,我们提议使用非线性langevin方程将统计微结构描述符的演变建模为连续的时间随机过程,其中统计微结构的概率密度函数(PDF)也是利益的数量(QOIS)(QOIS),也是fokkker的模型。我们讨论如何从理论和计算的角度校准Fokker-Planck方程的漂移和扩散项。校准的Fokker-Planck方程可以用作随机降低阶模型(ROM),以模拟统计微结构描述符PDF的微观结构演变。将微观结构演化中的统计微观结构描述源视为QOI,我们在三个集成的计算材料工程(ICME)模型中证明了我们提出的方法:动力学蒙特卡洛,相位场和分子动力学模拟。

Integrated Computational Materials Engineering (ICME) models have been a crucial building block for modern materials development, relieving heavy reliance on experiments and significantly accelerating the materials design process. However, ICME models are also computationally expensive, particularly with respect to time integration for dynamics, which hinders the ability to study statistical ensembles and thermodynamic properties of large systems for long time scales. To alleviate the computational bottleneck, we propose to model the evolution of statistical microstructure descriptors as a continuous-time stochastic process using a non-linear Langevin equation, where the probability density function (PDF) of the statistical microstructure descriptors, which are also the quantities of interests (QoIs), are modeled by the Fokker-Planck equation. We discuss how to calibrate the drift and diffusion terms of the Fokker-Planck equation from the theoretical and computational perspectives. The calibrated Fokker-Planck equation can be used as a stochastic reduced-order model (ROM) to simulate the microstructure evolution of statistical microstructure descriptors PDF. Considering statistical microstructure descriptors in the microstructure evolution as QoIs, we demonstrate our proposed methodology in three integrated computational materials engineering (ICME) models: kinetic Monte Carlo, phase field, and molecular dynamics simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源