论文标题
在扰动理论中,量子重力的连续性极限
The continuum limit of quantum gravity at first order in perturbation theory
论文作者
论文摘要
该度量标准的共形因子的Wilsonian重归其化群(RG)性质因具有错误的符号动力学项而深刻地改变了。结果是量子重力的新型扰动连续性极限,但是在$ \ hbar $中是非扰动的。重新归一化的轨迹的紫外线部分位于差异不变子空间之外,仅在红外线中输入该子空间,低于动态生成的振幅抑制量表。相互作用的结合函数的结构因子的系数功能由RG决定。在紫外线中,系数函数通过无限数量的基础耦合进行参数。适当地选择这些耦合,系数函数在输入差异不变子空间时琐碎。在这里,出现了动态生成有效的差异耦合,包括牛顿常数。在Legendre有效的行动方面,我们确定了一阶的连续限制,表征了此类系数功能的最通用形式,以验证普遍性。
The Wilsonian renormalization group (RG) properties of the conformal factor of the metric are profoundly altered by the fact that it has a wrong-sign kinetic term. The result is a novel perturbative continuum limit for quantum gravity, which is however non-perturbative in $\hbar$. The ultraviolet part of the renormalized trajectory lies outside the diffeomorphism invariant subspace, entering this subspace only in the infrared, below a dynamically generated amplitude suppression scale. Interactions are dressed with coefficient functions of the conformal factor, their form being determined by the RG. In the ultraviolet, the coefficient functions are parametrised by an infinite number of underlying couplings. Choosing these couplings appropriately, the coefficient functions trivialise on entering the diffeomorphism invariant subspace. Here, dynamically generated effective diffeomorphism couplings emerge, including Newton's constant. In terms of the Legendre effective action, we establish the continuum limit to first order, characterising the most general form of such coefficient functions so as to verify universality.