论文标题

量子旋转链的一般Lieb-Schultz-Mattis类型定理

General Lieb-Schultz-Mattis type theorems for quantum spin chains

论文作者

Ogata, Yoshiko, Tachikawa, Yuji, Tasaki, Hal

论文摘要

我们开发了一种通用操作员代数方法,该方法的重点是对称群的投影表示,用于证明Lieb-Schultz-Mattis型定理,即无需定理,这些定理排除了存在独特的间隙基地状态(或更一般而言,纯粹的分式状态),用于具有量子旋转链,用于与现场对称的量子旋转链。我们首先证明了对翻译不变链链的定理,该定理统一并扩展了[OT1]中的两个作者证明的两个定理。然后,我们证明了一个lieb-schultz-mattis型定理,用于旋转链,这些链条在反思下不变,而不一定是不变的。

We develop a general operator algebraic method which focuses on projective representations of symmetry group for proving Lieb-Schultz-Mattis type theorems, i.e., no-go theorems that rule out the existence of a unique gapped ground state (or, more generally, a pure split state), for quantum spin chains with on-site symmetry. We first prove a theorem for translation invariant spin chains that unifies and extends two theorems proved by two of the authors in [OT1]. We then prove a Lieb-Schultz-Mattis type theorem for spin chains that are invariant under the reflection about the origin and not necessarily translation invariant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源