论文标题
计算贝叶斯:从1763年到21世纪的贝叶斯计算
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
论文作者
论文摘要
贝叶斯统计范式使用概率语言来表达对产生观察到的数据的现象的不确定性。因此,概率分布将贝叶斯分析表征,其概率规则用于转换所有未知数的先前概率分布 - 参数,潜在变量,模型 - 在后分布中,之后的数据观察到了后分布。进行贝叶斯分析需要评估这些概率分布出现的积分。贝叶斯计算是在不存在分析解决方案的典型情况下评估此类积分的。本文将读者按时间顺序进行贝叶斯计算的时间顺序巡回演出,过去两个半世纪。从贝叶斯在1763年首次面对的一维积分开始,从最新的问题开始,在该问题中,我们将所有计算问题的未知数数字置于一个共同的框架中,并使用通用符号描述所有计算方法。目的是尤其是帮助新的研究人员 - 更普遍地有兴趣采用贝叶斯方法进行经验工作的人,可以理解目前正在提供的大量计算技术;了解何时以及为什么有用的方法;并看到确实存在的链接,它们之间的所有链接。
The Bayesian statistical paradigm uses the language of probability to express uncertainty about the phenomena that generate observed data. Probability distributions thus characterize Bayesian analysis, with the rules of probability used to transform prior probability distributions for all unknowns - parameters, latent variables, models - into posterior distributions, subsequent to the observation of data. Conducting Bayesian analysis requires the evaluation of integrals in which these probability distributions appear. Bayesian computation is all about evaluating such integrals in the typical case where no analytical solution exists. This paper takes the reader on a chronological tour of Bayesian computation over the past two and a half centuries. Beginning with the one-dimensional integral first confronted by Bayes in 1763, through to recent problems in which the unknowns number in the millions, we place all computational problems into a common framework, and describe all computational methods using a common notation. The aim is to help new researchers in particular - and more generally those interested in adopting a Bayesian approach to empirical work - make sense of the plethora of computational techniques that are now on offer; understand when and why different methods are useful; and see the links that do exist, between them all.