论文标题
kramers-weyl半学的磁故障光谱
Magnetic breakdown spectrum of a Kramers-Weyl semimetal
论文作者
论文摘要
我们计算了垂直磁场$ b $中的kramers-weyl半度薄板的兰道水平。 Fermi Arcs在相对表面的耦合可以以$ 1/b $ $ 1/b $的定期振荡的带宽扩大Landau的水平。我们用Weyl点的磁故障引起的一维超晶格来解释频谱。与由于Landau水平量化引起的Shubnikov-de HAAS相比,在较弱的场和温度较高时,可以将带宽度的振荡视为$ 1/B $ - 周期性磁性振荡,温度较高。在通用的Weyl半学中,没有这样的频谱出现,在时间不变的动量上,Kramers脱落性是必不可少的。
We calculate the Landau levels of a Kramers-Weyl semimetal thin slab in a perpendicular magnetic field $B$. The coupling of Fermi arcs on opposite surfaces broadens the Landau levels with a band width that oscillates periodically in $1/B$. We interpret the spectrum in terms of a one-dimensional superlattice induced by magnetic breakdown at Weyl points. The band width oscillations may be observed as $1/B$-periodic magnetoconductance oscillations, at weaker fields and higher temperatures than the Shubnikov-de Haas oscillations due to Landau level quantization. No such spectrum appears in a generic Weyl semimetal, the Kramers degeneracy at time-reversally invariant momenta is essential.