论文标题

个性化重新排列以改善现场推荐系统的多样性

Personalized Re-ranking for Improving Diversity in Live Recommender Systems

论文作者

Wang, Yichao, Zhang, Xiangyu, Liu, Zhirong, Dong, Zhenhua, Feng, Xinhua, Tang, Ruiming, He, Xiuqiang

论文摘要

工业推荐系统的用户通常是一次建议的项目列表。理想情况下,这样的列表建议应该为用户提供各种相关的选择。但是,实际上,将列表建议作为顶级建议实施。 Top-N建议从候选人中选择前N个项目进行显示。该列表是由排名函数生成的,该排名函数可以从标记的数据中学到以优化准确性。但是,Top-N建议可能会导致次优,因为它专注于每个单独的项目的准确性,并忽略项目之间的相互影响。因此,我们提出了一个个性化的重新排列模型,以改善实际推荐系统中建议列表的多样性。在任何现有排名函数之后,建议的重新排列模型可以轻松部署为后续组件。重新排列模型通过采用个性化的确定点过程(DPP)来改善多样性。 DPP已应用于某些推荐系统以改善多样性并增加用户参与度。但是,DPP没有考虑到用户可能对多样性具有个人倾向的事实。为了克服这种限制,我们的重新排列模型提出了个性化的DPP,以模拟每个用户的准确性和多样性之间的权衡。我们在Alarge量表工业推荐系统上实施和部署个性化DPP模型。离线和在线的实验结果证明了我们提出的重新排行模型的效率。

Users of industrial recommender systems are normally suggesteda list of items at one time. Ideally, such list-wise recommendationshould provide diverse and relevant options to the users. However, in practice, list-wise recommendation is implemented as top-N recommendation. Top-N recommendation selects the first N items from candidates to display. The list is generated by a ranking function, which is learned from labeled data to optimize accuracy.However, top-N recommendation may lead to suboptimal, as it focuses on accuracy of each individual item independently and overlooks mutual influence between items. Therefore, we propose a personalized re-ranking model for improving diversity of the recommendation list in real recommender systems. The proposed re-ranking model can be easily deployed as a follow-up component after any existing ranking function. The re-ranking model improves the diversity by employing personalized Determinental Point Process (DPP). DPP has been applied in some recommender systems to improve the diversity and increase the user engagement.However, DPP does not take into account the fact that users may have individual propensities to the diversity. To overcome such limitation, our re-ranking model proposes a personalized DPP to model the trade-off between accuracy and diversity for each individual user. We implement and deploy the personalized DPP model on alarge scale industrial recommender system. Experimental results on both offline and online demonstrate the efficiency of our proposed re-ranking model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源