论文标题
使用深度度量学习和心理测试的知识启发
Knowledge Elicitation using Deep Metric Learning and Psychometric Testing
论文作者
论文摘要
域中存在的知识很好地表示为相应的概念之间的关系。例如,在动物学中,动物物种形成复杂的层次结构;在基因组学中,分子的不同(部分)是根据其功能以组和亚组组织的。植物,分子和天文对象均形成复杂的分类法。然而,当在此类域中应用监督的机器学习(ML)时,我们通常会将复杂而丰富的知识减少到固定的标签上,并诱导模型在相对于这些标签方面表现出良好的概括性能。这种还原主义方法的主要原因是难以从专家那里吸引领域知识。在许多现实世界中,开发具有足够的忠诚度并提供全面的多标签注释的标签结构可能是劳动密集型的。在本文中,我们提供了一种有效的层次知识启发(HKE)的方法,该专家从事使用高维数据(例如图像或视频)的方法。我们的方法基于心理测试和积极的深度度量学习。开发的模型将高维数据嵌入了距离在语义上有意义的度量空间中,并且可以在层次结构中组织数据。我们通过一系列实验提供了关于简单形状的数据集的一系列实验,以及CIFAR 10和时尚杀手基准测试,我们的方法确实成功地揭示了层次结构。
Knowledge present in a domain is well expressed as relationships between corresponding concepts. For example, in zoology, animal species form complex hierarchies; in genomics, the different (parts of) molecules are organized in groups and subgroups based on their functions; plants, molecules, and astronomical objects all form complex taxonomies. Nevertheless, when applying supervised machine learning (ML) in such domains, we commonly reduce the complex and rich knowledge to a fixed set of labels, and induce a model shows good generalization performance with respect to these labels. The main reason for such a reductionist approach is the difficulty in eliciting the domain knowledge from the experts. Developing a label structure with sufficient fidelity and providing comprehensive multi-label annotation can be exceedingly labor-intensive in many real-world applications. In this paper, we provide a method for efficient hierarchical knowledge elicitation (HKE) from experts working with high-dimensional data such as images or videos. Our method is based on psychometric testing and active deep metric learning. The developed models embed the high-dimensional data in a metric space where distances are semantically meaningful, and the data can be organized in a hierarchical structure. We provide empirical evidence with a series of experiments on a synthetically generated dataset of simple shapes, and Cifar 10 and Fashion-MNIST benchmarks that our method is indeed successful in uncovering hierarchical structures.