论文标题
基于脑电图的大脑计算机界面的转移学习:自2016年以来的进度回顾
Transfer Learning for EEG-Based Brain-Computer Interfaces: A Review of Progress Made Since 2016
论文作者
论文摘要
大脑计算机界面(BCI)使用户可以使用大脑信号直接与计算机通信。最常见的非侵入性BCI模态脑电图(EEG)对噪声/人工制品敏感,并受试者之间/受试者内部的非平稳性。因此,很难在基于脑电图的BCI系统中构建通用模式识别模型,该模型在不同的主题,在不同的会话中,针对不同的设备和任务是最佳的。通常,需要进行校准会话来收集一些新主题的培训数据,这是耗时且用户不友好的。转移学习(TL)经常使用来自类似或相关的主题/会话/设备/任务的数据或知识来促进新主题/会话/会话/设备/任务的学习,以减少校准工作量。本文回顾了过去几年中有关基于EEG的BCI的TL方法的期刊出版物,即自2016年以来。六个范式和应用 - 运动图像,与事件相关的潜力,稳态的视觉诱发潜力,情感BCIS,回归问题,回归问题和对抗性攻击。对于每个范式/应用程序,我们将TL方法分组为跨主题/会话,交叉设备和交叉任务设置,然后单独审查它们。观察和结论是在本文的结尾做出的,这可能指出未来的研究方向。
A brain-computer interface (BCI) enables a user to communicate with a computer directly using brain signals. The most common non-invasive BCI modality, electroencephalogram (EEG), is sensitive to noise/artifact and suffers between-subject/within-subject non-stationarity. Therefore, it is difficult to build a generic pattern recognition model in an EEG-based BCI system that is optimal for different subjects, during different sessions, for different devices and tasks. Usually, a calibration session is needed to collect some training data for a new subject, which is time-consuming and user unfriendly. Transfer learning (TL), which utilizes data or knowledge from similar or relevant subjects/sessions/devices/tasks to facilitate learning for a new subject/session/device/task, is frequently used to reduce the amount of calibration effort. This paper reviews journal publications on TL approaches in EEG-based BCIs in the last few years, i.e., since 2016. Six paradigms and applications -- motor imagery, event-related potentials, steady-state visual evoked potentials, affective BCIs, regression problems, and adversarial attacks -- are considered. For each paradigm/application, we group the TL approaches into cross-subject/session, cross-device, and cross-task settings and review them separately. Observations and conclusions are made at the end of the paper, which may point to future research directions.