论文标题

离散时间量子随机步行的量子模拟

Quantum Simulation of a Discrete-Time Quantum Stochastic Walk

论文作者

Schuhmacher, Peter K., Govia, Luke C. G., Taketani, Bruno G., Wilhelm, Frank K.

论文摘要

量子步行已被证明具有广泛的应用,从人工智能,光合作用和量子运输。量子随机步行(QSWS)将此概念推广到其他非独立进化。在本文中,我们提出了一种基于轨迹的量子模拟协议,以在量子设备中有效实现离散时间QSW家族。在衍生具有单个边缘的2-Vertex图的协议之后,我们展示了我们的协议如何将其推广到具有任意拓扑和连接性的图形。直接概括导致协议对复杂图的简单缩放。最后,我们展示了如何通过离散时间QSW模拟限制类别的连续时间QSW,以及如何适合我们的离散时间QSW的仿真协议。

Quantum walks have been shown to have a wide range of applications, from artificial intelligence, to photosynthesis, and quantum transport. Quantum stochastic walks (QSWs) generalize this concept to additional non-unitary evolution. In this paper, we propose a trajectory-based quantum simulation protocol to effectively implement a family of discrete-time QSWs in a quantum device. After deriving the protocol for a 2-vertex graph with a single edge, we show how our protocol generalizes to a graph with arbitrary topology and connectivity. The straight-forward generalization leads to simple scaling of the protocol to complex graphs. Finally, we show how to simulate a restricted class of continuous-time QSWs by a discrete-time QSW, and how this is amenable to our simulation protocol for discrete-time QSWs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源