论文标题
Speednet:学习视频中的快速性
SpeedNet: Learning the Speediness in Videos
论文作者
论文摘要
我们希望自动预测视频中移动物体的“快速” - 无论它们的移动速度比“自然”速度更快,还是慢。我们方法中的核心组成部分是SpeedNet ---一个新颖的深网,训练有素,可以检测视频是否按照正常速度播放,或者是否被加速。 Speednet以自我监督的方式对大量自然视频进行训练,而无需任何手动注释。我们展示了如何使用这个单个二进制分类网络来检测对象快速的任意速率。我们通过SpeedNet在包含复杂自然动作的各种视频上证明了预测结果,并检查了其用于做出这些预测的视觉提示。重要的是,我们表明,通过预测视频的速度,该模型学习了一个强大而有意义的时空表示,超越了简单的运动提示。我们演示了这些学到的功能如何提高自我监督的动作识别的性能,并可用于视频检索。此外,我们还应用SpeedNet来生成时间变化的自适应视频速度,这可以使观众能够更快地观看视频,但是对于均匀加速的视频而言,令人震惊的,不自然的动作较少。
We wish to automatically predict the "speediness" of moving objects in videos---whether they move faster, at, or slower than their "natural" speed. The core component in our approach is SpeedNet---a novel deep network trained to detect if a video is playing at normal rate, or if it is sped up. SpeedNet is trained on a large corpus of natural videos in a self-supervised manner, without requiring any manual annotations. We show how this single, binary classification network can be used to detect arbitrary rates of speediness of objects. We demonstrate prediction results by SpeedNet on a wide range of videos containing complex natural motions, and examine the visual cues it utilizes for making those predictions. Importantly, we show that through predicting the speed of videos, the model learns a powerful and meaningful space-time representation that goes beyond simple motion cues. We demonstrate how those learned features can boost the performance of self-supervised action recognition, and can be used for video retrieval. Furthermore, we also apply SpeedNet for generating time-varying, adaptive video speedups, which can allow viewers to watch videos faster, but with less of the jittery, unnatural motions typical to videos that are sped up uniformly.