论文标题

耦合振荡器的新兴空间

Emergent spaces for coupled oscillators

论文作者

Thiem, Thomas N., Kooshkbaghi, Mahdi, Bertalan, Tom, Laing, Carlo R., Kevrekidis, Ioannis G.

论文摘要

在本文中,我们提出了一种基于多种学习算法的“定制”粗变量的系统,数据驱动的方法。我们使用经典的库拉莫托相振荡器模型来说明这种方法,并演示我们的流形学习技术如何成功地识别一个与已建立的库拉莫托阶订单参数一对一的粗变量。然后,我们介绍了我们的粗粒方法的扩展,使我们能够通过数值时间积分器(初始值求解器)模板的人工神经网络体系结构来学习发现的粗变量的演化方程。这种方法使我们能够从稀疏流数据中学习状态变量的时间导数的准确近似,因此发现其动态行为的有用的近似微分方程描述。我们通过学习与库拉莫托阶阶参数动力学的已知分析表达相一致的ODE来证明了这种能力。然后,我们展示了如何使用这种方法来学习通过我们的多种学习方法发现的粗变量的动力学。在这两个示例中,我们将基于神经网络的方法的结果与典型的有限差异进行比较,以几何谐波互补。最后,我们提出了一系列计算示例,说明了如何使用流形学习方法的变体来发现“有效”参数集,减少参数组合,用于具有复杂耦合的多参数模型。最后,我们讨论了这种方法可能的扩展,包括获得数据驱动的有效偏微分方程以进行粗粒神经元网络行为。

In this paper we present a systematic, data-driven approach to discovering "bespoke" coarse variables based on manifold learning algorithms. We illustrate this methodology with the classic Kuramoto phase oscillator model, and demonstrate how our manifold learning technique can successfully identify a coarse variable that is one-to-one with the established Kuramoto order parameter. We then introduce an extension of our coarse-graining methodology which enables us to learn evolution equations for the discovered coarse variables via an artificial neural network architecture templated on numerical time integrators (initial value solvers). This approach allows us to learn accurate approximations of time derivatives of state variables from sparse flow data, and hence discover useful approximate differential equation descriptions of their dynamic behavior. We demonstrate this capability by learning ODEs that agree with the known analytical expression for the Kuramoto order parameter dynamics at the continuum limit. We then show how this approach can also be used to learn the dynamics of coarse variables discovered through our manifold learning methodology. In both of these examples, we compare the results of our neural network based method to typical finite differences complemented with geometric harmonics. Finally, we present a series of computational examples illustrating how a variation of our manifold learning methodology can be used to discover sets of "effective" parameters, reduced parameter combinations, for multi-parameter models with complex coupling. We conclude with a discussion of possible extensions of this approach, including the possibility of obtaining data-driven effective partial differential equations for coarse-grained neuronal network behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源