论文标题

降低欧几里得精神的激进分子

Reducing radicals in the spirit of Euclid

论文作者

Girstmair, Kurt

论文摘要

令$ p $是一个奇怪的天然数字$ \ ge 3 $。受Euclid的{\ em Elements}的结果的启发,我们表达了非理性$ y = \ sqrt [p] {d+\ sqrt r},其度为$ 2p $的$ $,作为$ 2p $,是不理性的学位$ \ le p $的多样性。在某些情况下,$ y $由简单的激进分子表示。该度的降低表现出非常规定的多项式模式。该证明是基于Zeilberger算法的超几何概述。

Let $p$ be an odd natural number $\ge 3$. Inspired by results from Euclid's {\em Elements}, we express the irrational $$y=\sqrt[p]{d+\sqrt R}, $$ whose degree is $2p$, as a polynomial function of irrationals of degrees $\le p$. In certain cases $y$ is expressed by simple radicals. This reduction of the degree exhibits remarkably regular patterns of the polynomials involved. The proof is based on hypergeometric summation, in particular, on Zeilberger's algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源