论文标题

轨迹数据中的异常检测和归一流的流量

Anomaly Detection in Trajectory Data with Normalizing Flows

论文作者

Dias, Madson L. D., Mattos, César Lincoln C., da Silva, Ticiana L. C., de Macedo, José Antônio F., Silva, Wellington C. P.

论文摘要

在实际应用中,检测异常数据模式的任务与具有挑战性一样重要。在空间数据的背景下,对意外轨迹的识别带来了其他困难,例如高维度和变化的图案长度。我们旨在从概率密度估计的观点解决此类问题,因为它提供了一个无监督的程序来识别分布样本。更具体地说,我们采用基于归一化流量的方法,这是一个最新的框架,可以通过神经网络数据进行复杂的密度估算。我们的建议计算轨迹的每个段的精确模型可能性值,这是标准化流量的重要特征。然后,我们将段的可能性汇总为单个相干轨迹异常得分。这样的策略使处理可能具有不同长度的大序列。我们使用现实世界轨迹数据评估了我们的方法论,称为汇总的异常检测(等级),并将其与更传统的异常检测技术进行比较。在执行的计算实验中获得的有希望的结果表明了等级的可行性,特别是考虑自回归归一化流量的变体。

The task of detecting anomalous data patterns is as important in practical applications as challenging. In the context of spatial data, recognition of unexpected trajectories brings additional difficulties, such as high dimensionality and varying pattern lengths. We aim to tackle such a problem from a probability density estimation point of view, since it provides an unsupervised procedure to identify out of distribution samples. More specifically, we pursue an approach based on normalizing flows, a recent framework that enables complex density estimation from data with neural networks. Our proposal computes exact model likelihood values, an important feature of normalizing flows, for each segment of the trajectory. Then, we aggregate the segments' likelihoods into a single coherent trajectory anomaly score. Such a strategy enables handling possibly large sequences with different lengths. We evaluate our methodology, named aggregated anomaly detection with normalizing flows (GRADINGS), using real world trajectory data and compare it with more traditional anomaly detection techniques. The promising results obtained in the performed computational experiments indicate the feasibility of the GRADINGS, specially the variant that considers autoregressive normalizing flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源