论文标题

rényi地图的广义斐波那契数和极值法律

Generalized Fibonacci numbers and extreme value laws for the Rényi map

论文作者

Boer, N. B-S., Sterk, A. E.

论文摘要

在本文中,我们证明了通过迭代rényi映射$ x \ mapstoβx\ pmod 1 $获得的随机过程的极值定律,我们假设$β> 1 $是整数。海曼(Haiman,2018)得出了Lebesgue阈值超出阈值的递归公式。我们展示了此递归公式与$ K $循环的斐波那契序列的重新定制版本有关。对于后一个序列,我们得出了一个BINET公式,该公式会导致封闭形式的表达,以分布随机过程的部分最大值。极值定律的证明是通过得出与斐波那契序列相关的特征多项式的主要词根来完成的。

In this paper we prove an extreme value law for a stochastic process obtained by iterating the Rényi map $x \mapsto βx \pmod 1$, where we assume that $β>1$ is an integer. Haiman (2018) derived a recursion formula for the Lebesgue measure of threshold exceedance sets. We show how this recursion formula is related to a rescaled version of the $k$-generalized Fibonacci sequence. For the latter sequence we derive a Binet formula which leads to a closed-form expression for the distribution of partial maxima of the stochastic process. The proof of the extreme value law is completed by deriving sharp bounds for the dominant root of the characteristic polynomial associated with the Fibonacci sequence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源