论文标题

与犯罪相关的社会经济,建筑环境和流动条件:多个城市的研究

Socio-economic, built environment, and mobility conditions associated with crime: A study of multiple cities

论文作者

De Nadai, Marco, Xu, Yanyan, Letouzé, Emmanuel, González, Marta C., Lepri, Bruno

论文摘要

如今,世界上有23%的人口居住在数百万个城市中。在这些大都市中,犯罪活动比在小城市或农村地区高得多和暴力。因此,了解哪些因素会影响大城市的城市犯罪是一个紧迫的需求。主流研究通过历史小组数据分析犯罪记录或对历史模式结合生态因素和探索性映射的分析。最近,机器学习方法随着时间的推移提供了知情的犯罪预测。但是,以前的研究一次集中在一个城市上,仅考虑有限的因素(例如社会经济特征),并且通常是在大空间单位上。因此,我们对影响跨文化和城市犯罪的因素的理解非常有限。在这里,我们提出了一个贝叶斯模型,以探讨犯罪不仅与社会经济因素的关系,还与建筑环境(例如土地使用)和社区的流动特征相关。为此,我们将多个开放数据源与移动电话轨迹集成在一起,并比较不同因素与波士顿,波哥大,洛杉矶和芝加哥的不同城市的犯罪关系。我们发现,社会经济条件,移动性信息和邻里的身体特征的综合使用有效地解释了犯罪的出现,并提高了传统方法的绩效。但是,我们表明,社区的社会生态因素与犯罪的关系从一个城市到另一个城市都大不相同。因此,显然没有“一个人适合所有”模型。

Nowadays, 23% of the world population lives in multi-million cities. In these metropolises, criminal activity is much higher and violent than in either small cities or rural areas. Thus, understanding what factors influence urban crime in big cities is a pressing need. Mainstream studies analyse crime records through historical panel data or analysis of historical patterns combined with ecological factor and exploratory mapping. More recently, machine learning methods have provided informed crime prediction over time. However, previous studies have focused on a single city at a time, considering only a limited number of factors (such as socio-economical characteristics) and often at large spatial units. Hence, our understanding of the factors influencing crime across cultures and cities is very limited. Here we propose a Bayesian model to explore how crime is related not only to socio-economic factors but also to the built environmental (e.g. land use) and mobility characteristics of neighbourhoods. To that end, we integrate multiple open data sources with mobile phone traces and compare how the different factors correlate with crime in diverse cities, namely Boston, Bogotá, Los Angeles and Chicago. We find that the combined use of socio-economic conditions, mobility information and physical characteristics of the neighbourhood effectively explain the emergence of crime, and improve the performance of the traditional approaches. However, we show that the socio-ecological factors of neighbourhoods relate to crime very differently from one city to another. Thus there is clearly no "one fits all" model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源