论文标题

基于学习事件的运动脱张

Learning Event-Based Motion Deblurring

论文作者

Jiang, Zhe, Zhang, Yu, Zou, Dongqing, Ren, Jimmy, Lv, Jiancheng, Liu, Yebin

论文摘要

由于模糊过程中运动信息的显着丧失,从运动毛发图像中恢复尖锐的视频序列是高度不良的。但是,对于基于事件的摄像机,可以以较高的时间率将快速运动作为事件捕获,从而为探索有效解决方案提供了新的机会。在本文中,我们始于基于事件的运动去布的顺序表述,然后展示如何通过新颖的端到端深度体系结构来展开其优化。所提出的体系结构是一个卷积复发性神经网络,以原则性的方式整合了全球和本地尺度的视觉和时间知识。为了进一步改善重建,我们提出了一个可区分的定向事件滤波模块,以从事件流中有效提取丰富的边界。我们对合成GOPRO数据集进行了广泛的实验,并进行了由Davis240C摄像机捕获的大型新介绍的数据集。所提出的方法可实现最先进的重建质量,并可以更好地概括地处理现实世界动作模糊。

Recovering sharp video sequence from a motion-blurred image is highly ill-posed due to the significant loss of motion information in the blurring process. For event-based cameras, however, fast motion can be captured as events at high time rate, raising new opportunities to exploring effective solutions. In this paper, we start from a sequential formulation of event-based motion deblurring, then show how its optimization can be unfolded with a novel end-to-end deep architecture. The proposed architecture is a convolutional recurrent neural network that integrates visual and temporal knowledge of both global and local scales in principled manner. To further improve the reconstruction, we propose a differentiable directional event filtering module to effectively extract rich boundary prior from the stream of events. We conduct extensive experiments on the synthetic GoPro dataset and a large newly introduced dataset captured by a DAVIS240C camera. The proposed approach achieves state-of-the-art reconstruction quality, and generalizes better to handling real-world motion blur.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源