论文标题

一种全球收敛的方法,可加速使用固定模型降低的拓扑优化

A globally convergent method to accelerate topology optimization using on-the-fly model reduction

论文作者

Yano, Masayuki, Huang, Tianci, Zahr, Matthew J.

论文摘要

我们提出了一种全球收敛的方法,以加速基于密度的拓扑优化,使用基于投影的缩小阶模型(ROM)和信任区域方法。为了加速拓扑优化,我们用ROM替换了大规模有限元模拟,该元件模拟主导了计算成本,ROM通过数量级来降低目标函数和梯度评估的成本。为了确保融合,我们首先引入了一种信任区域方法,该方法采用了广义的信任区域约束,并证明它是全球收敛的。然后,我们设计了一类全球融合的ROM加速拓扑优化方法,这些方法由两种理论(上述信任区域理论)介绍,该理论确定了保证方法将方法收敛到原始拓扑优化问题的临界点所需的ROM准确性条件;基于投影的ROM的后验误差估计理论,该理论为ROM构造程序提供了满足精度条件的信息。这导致了信任区域的方法,这些方法在优化过程中构建和更新ROM;无论起点如何,这些方法都可以保证将其收敛到原始未还原拓扑优化问题的临界点。对三种不同结构拓扑优化问题的数值实验表明,提出的减少拓扑优化方法加速了收敛到最佳设计,最多可达一个数量级。

We present a globally convergent method to accelerate density-based topology optimization using projection-based reduced-order models (ROMs) and trust-region methods. To accelerate topology optimization, we replace the large-scale finite element simulation, which dominates the computational cost, with ROMs that reduce the cost of objective function and gradient evaluations by orders of magnitude. To guarantee convergence, we first introduce a trust-region method that employs generalized trust-region constraints and prove it is globally convergent. We then devise a class of globally convergent ROM-accelerated topology optimization methods informed by two theories: the aforementioned trust-region theory, which identifies the ROM accuracy conditions required to guarantee the method converges to a critical point of the original topology optimization problem; a posteriori error estimation theory for projection-based ROMs, which informs ROM construction procedure to meet the accuracy conditions. This leads to trust-region methods that construct and update the ROM on-the-fly during optimization; the methods are guaranteed to converge to a critical point of the original, unreduced topology optimization problem, regardless of starting point. Numerical experiments on three different structural topology optimization problems demonstrate the proposed reduced topology optimization methods accelerate convergence to the optimal design by up to an order of magnitude.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源