论文标题

$ pgl_2(p^{2^n})$的订单综合体可签约

The order complex of $PGL_2(p^{2^n})$ is contractible when $p$ is odd

论文作者

Pierro, Emilio

论文摘要

给定一个$ g $,其子组的晶格$ \ mathcal {l}(g)$可以以自然方式看作是一种简单的复合体。包含$ 1_g,g \ in \ Mathcal {l}(g)$意味着$ \ nathcal {l}(g)$是可违约的,因此我们研究了该订单复杂$ \ wideHat {\ Mathcal {\ Mathcal {l}(l}(l}(l}(g)}(g)(g)}:= \ Mathcal = \ natcal {l l} g)的拓扑结构, \ {1_g,g \} $。在此简短的说明中,我们考虑$ \ wideHat {\ Mathcal {l}(g)} $的同质类型,其中$ g \ cong pgl_2(p^{2^n})$,$ p \ geq 3 $,$ n \ geq 1 $,并显示$ \ \ widehat {\ wideHat {\ nathcal contrib contria这与有限基团的同阶阶络合物类型的Shareshian的猜想是一致的。

Given a group $G$, its lattice of subgroups $\mathcal{L}(G)$ can be viewed as a simplicial complex in a natural way. The inclusion of $1_G, G \in \mathcal{L}(G)$ implies that $\mathcal{L}(G)$ is contractible, and so we study the topology of the order complex $\widehat{\mathcal{L}(G)} := \mathcal{L}(G) \setminus \{1_G,G\}$. In this short note we consider the homotopy type of $\widehat{\mathcal{L}(G)}$ where $G \cong PGL_2(p^{2^n})$, $p \geq 3$, $n \geq 1$ and show that $\widehat{\mathcal{L}(G)}$ is contractible. This is consistent with a conjecture of Shareshian on the homotopy type of order complexes of finite groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源