论文标题

渐近的波动方程的局部能量估计在接近Kerr的局部能量估计

A local energy estimate for wave equations on metrics asymptotically close to Kerr

论文作者

Lindblad, Hans, Tohaneanu, Mihai

论文摘要

在本文中,我们证明了对具有小角动量的KERR度量的慢速衰减指标的线性波方程的局部能量估计。作为应用程序,我们研究quasilinear Wave方程$ \ box_ {g(u,t,x)} u = 0 $ 指标$ g(u,t,x)$与带有小角动量$ g(0,t,x)$的kerr公制的近距离(渐近等于)。根据公制的合适假设 系数,并假设$ u $的初始数据足够小,我们证明了解决方案$ u $的全球存在和衰减。

In this article we prove a local energy estimate for the linear wave equation on metrics with slow decay to a Kerr metric with small angular momentum. As an application, we study the quasilinear wave equation $\Box_{g(u, t, x)} u = 0$ where the metric $g(u, t, x)$ is close (and asymptotically equal)to a Kerr metric with small angular momentum $g(0,t,x)$. Under suitable assumptions on the metric coefficients, and assuming that the initial data for $u$ is small enough, we prove global existence and decay of the solution $u$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源