论文标题
具有动态边界条件和CASIMIR效应的量子场理论
Quantum field theory with dynamical boundary conditions and the Casimir effect
论文作者
论文摘要
我们研究了一个耦合系统,该系统描述了散装场之间的相互作用动力学,该动力学局限于具有及时边界的有限区域和可观察到的边界。在我们的系统中,边界可观察到的动力学规定了整体场的动态边界条件。我们以抽象的线性klein-gordon方程的形式施放经典系统,以扩大的希尔伯特空间,用于散装场和可观察到的边界。这使得可以将量化的一般方法应用于我们的耦合系统。特别是,我们详细实施了Fock量化。使用此量化,我们研究了耦合系统中的Casimir效应。具体而言,我们计算了重新归一化的局部状态极化和局部Casimir能量,我们可以为整体场和可观察到的整体场和边界定义。综合Casimir能量为正或负面的数值示例。
We study a coupled system that describes the interacting dynamics between a bulk field, confined to a finite region with timelike boundary, and a boundary observable. In our system the dynamics of the boundary observable prescribes dynamical boundary conditions for the bulk field. We cast our classical system in the form of an abstract linear Klein-Gordon equation, in an enlarged Hilbert space for the bulk field and the boundary observable. This makes it possible to apply to our coupled system the general methods of quantization. In particular, we implement the Fock quantization in full detail. Using this quantization we study the Casimir effect in our coupled system. Specifically, we compute the renormalized local state polarization and the local Casimir energy, which we can define for both the bulk field and the boundary observable of our system. Numerical examples in which the integrated Casimir energy is positive or negative are presented.