论文标题
密度图指导对象检测空中图像
Density Map Guided Object Detection in Aerial Images
论文作者
论文摘要
高分辨率航空图像中的对象检测是一项具有挑战性的任务,因为1)对象大小的较大变化; 2)物体的不均匀分布。一种常见的解决方案是将大型空中图像分为小(均匀)农作物,然后在每个小农作物上应用对象检测。在本文中,我们研究了解决这些挑战的图像裁剪策略。具体而言,我们提出了一个密度映射引导的对象检测网络(DMNET),它的灵感来自于观察到图像的对象密度映射显示对象如何根据地图的像素强度分布。随着像素强度的变化,它可以判断一个区域是否具有对象,这又提供了统计上裁剪图像的指导。 DMNET具有三个关键组件:密度图生成模块,图像裁剪模块和对象检测器。 DMNET生成密度图,并根据密度强度来学习比例信息,以形成农作物区域。广泛的实验表明,DMNET可以在两个流行的空中图像数据集(即Visiondrone和uavdt)上实现最先进的性能。
Object detection in high-resolution aerial images is a challenging task because of 1) the large variation in object size, and 2) non-uniform distribution of objects. A common solution is to divide the large aerial image into small (uniform) crops and then apply object detection on each small crop. In this paper, we investigate the image cropping strategy to address these challenges. Specifically, we propose a Density-Map guided object detection Network (DMNet), which is inspired from the observation that the object density map of an image presents how objects distribute in terms of the pixel intensity of the map. As pixel intensity varies, it is able to tell whether a region has objects or not, which in turn provides guidance for cropping images statistically. DMNet has three key components: a density map generation module, an image cropping module and an object detector. DMNet generates a density map and learns scale information based on density intensities to form cropping regions. Extensive experiments show that DMNet achieves state-of-the-art performance on two popular aerial image datasets, i.e. VisionDrone and UAVDT.